Durée : 3h. Calculatrices et téléphones portables interdits. Il sera tenu compte de la présentation, de l'orthographe et de la précision de la rédaction dans la notation de la copie.

Exercice 1:

Partie I : Étude d'endomorphismes tels que $u \circ u = 0$

Soient E un K-espace vectoriel de dimension $n \in \mathbb{N}^*$, u un endomorphisme non nul de E tel que $u \circ u = 0$, r le rang de u et p la dimension du noyau de u.

- 1. Ici on prend $n \ge 2$:
 - (a) Montrer que $Im(u) \subset Ker(u)$.
 - (b) En déduire que : $r \le \frac{n}{2}$ et $p \ge \frac{n}{2}$.
- 2. Dans cette question, on suppose que n = 3.
 - (a) Montrer que r = 1. Quelle est alors la dimension de Ker(u)?
 - (b) Soit \vec{k} un vecteur de \vec{E} n'appartenant pas à Ker(u), et $\vec{i} = u(\vec{k})$. Justifier l'existence d'un vecteur $\overrightarrow{j} \in \text{Ker}(u)$ non colinéaire avec \overrightarrow{i} , puis démontrer que $\mathscr{C} = (\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$ est une base de E.
 - (c) Déterminer la matrice de u dans la base \mathscr{C} .

Partie II: Application sur un exemple

Soit $v \in \mathcal{L}(\mathbb{R}^3)$ dont la matrice dans la base canonique $\mathcal{B} = (\overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3})$ de \mathbb{R}^3 est $J = \begin{pmatrix} -1 & 1 & 1 \\ -2 & 2 & 2 \\ 1 & -1 & -1 \end{pmatrix}$.

- 1. Vérifier que $v \circ v = 0$.
- 2. Déterminer le noyau et l'image de v (préciser une base pour chacun).
- 3. Trouver une base \mathscr{C} de \mathbb{R}^3 dans laquelle v admet pour matrice $T = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.
- 4. Donner la matrice de passage de la base $\mathcal B$ à la base $\mathcal C$, notée P dans la suite. Déterminer son inverse.
- 5. Rappeler la formule de changement de base pour l'endomorphisme v (en la traduisant avec les matrices de cet exercice).

Partie III: Un système différentiel

On garde les matrices de la partie précédente.

On considère trois fonctions x, y et z, de \mathbb{R} dans \mathbb{R} , dérivables sur \mathbb{R} . On veut résoudre le système différentiel :

(S):
$$\begin{cases} x'(t) &= -x(t) + y(t) + z(t) \\ y'(t) &= -2x(t) + 2y(t) + 2z(t) \text{ avec les conditions initiales } x(0) = 1, y(0) = z(0) = 3 \\ z'(t) &= x(t) - y(t) - z(t) \end{cases}$$

- 1. On pose $X(t) = \begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix}$. Montrer que (S) est équivalent à X'(t) = JX(t).

 2. Soit $Y(t) = P^{-1}X(t) = \begin{pmatrix} x_1(t) \\ y_1(t) \\ z_1(t) \end{pmatrix}$; prouver que (S) est équivalent à $(S_1): Y'(t) = TY(t)$.
- 3. Résoudre alors les équations différentielles donnant x_1 , y_1 et z_1 , et en déduire x, y et z en fonction de t.

Exercice 2:

Soit la suite définie par : $u_0 = 1$ et $\forall n \in \mathbb{N}$, $u_{n+1} = \sin(u_n)$.

- 1. (a) Prouver que : $\forall n \in \mathbb{N}, u_n \in [0,1]$.
 - (b) Montrer que : $\forall x \in [0, 1]$, $\sin(x) \le x$. Quand y-a-t-il égalité?
 - (c) En déduire que la suite (u_n) est décroissante et qu'elle converge vers 0.
- 2. On définit, pour $\alpha \neq 0$ (fixé) la fonction g sur $]0,\pi[$ par $g(x) = (\sin x)^{\alpha} x^{\alpha}$.
 - (a) A l'aide d'un développement limité, donner un équivalent en 0 de g(x).
 - (b) Comment choisir α pour que g admette une limite finie non nulle en 0? On prendra cette valeur dans la suite de l'exercice.
 - (c) On pose, pour tout $n \in \mathbb{N}^*$: $v_n = g(u_n) = u_{n+1}^{\alpha} u_n^{\alpha}$. Montrer que (v_n) converge vers une limite à préciser.
 - (d) En admettant que $\frac{v_0+v_1+...+v_{n-1}}{n}$ converge vers la même limite que celle de (v_n) (c'est le théorème de Césaro), prouver que

$$\lim_{n \to +\infty} \frac{1}{n} \left(\frac{1}{u_n^2} - \frac{1}{u_0^2} \right) = \frac{1}{3}$$

(e) (on peut admettre le résultat précédent pour traiter cette question) En déduire que : $u_n \sim \sqrt{\frac{3}{n}}$.